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Introduction 

The Department of Defense has i n i t i a t e d  programs aimed a t  evaluating l i qu id  
coa l ,  o i l  

O f  major importance t o  the  Navy a re  a i r c r a f t  fue l s  (JP-5) 
hydrocarbon fue l s  which a re  derived from a l t e rna te  ( f o s s i l )  sources: 
shale and tar sands. 
and ship d iese l  fue l s  (DFM). 
by means of s t r ingent  spec i f ica t ions  t e s t s .  However, complete knowledge of f u e l  
chemical composition defines t h e  proper t ies  of t h e  fue l .  
a re  of c r i t i c a l  importance t o  t h e  N a v y  can be a l t e r ed  by simple physical methods 
(i.e.,  f l ash  point (1)). However, other f u e l  
composition and therefore ,a re  not subject t o  f a c i l e  a l te ra t ion .  

The proper t ies  of these  kerosene fue l s  a r e  controlled 

Certain proper t ies  which 

proper t ies  depend strongly on f u e l  

In  order t o  gain a c l ea re r  understanding of t he  e f f ec t s  of chemical composition 

J e t  fue l s  derived from 

Reported below a re  the  r e su l t s  of analysis of t he  aromatic 

on fue l  properties,  a de ta i led  analysis w a s  undertaken. 
w i l l  be l imited t o  j e t  fue l s  used i n  Naval a i r c r a f t  (JP-5). 
Coal, o i l  shale and t a r  sands were analyzed. The normal alkane ana lys i s  has been 
reported elsewhere (1). 
components of these  fue ls .  

The discussion i n  t h i s  paper 

Production of Fuels 

Coal Derived Fuels 

The coa l  derived fue l s  used i n  t h i s  work were obtained by l iquefac t ion  of a 
Western Kentucky and a Utah coa l  v i a  t he  COED process (2).  
pyrolyzed i n  an ebullated bed r e t o r t  at  temperatures ranging from 600 t o  1600 '~ .  The 
condensed o i l  i s  hydrotreated over Ni-Mo ca ta lys t  (-2500 psig H2,  7-800°F) t o  
produce a low sulfur crude o i l .  The crude o i l  was then refined by hydrotreatment (3)  
and d i s t i l l e d  t o  give t h e  JP-5 grade fuels,Sun 1 (Western Kentucky coa l ) ,  Sun 2 (Utah 
coa l )  and Sun 5 (Western Kentucky coa l ) .  A schematic of the major process s teps  used 
i n  the  production of these fue ls  i s  shown i n  Figure 1. 

In  t h i s  process, coa l  is 

Alternative methods of re f in ing  coa l  derived crude o i l s  were examined. One 
such method involved se lec t ive  removal of heavy aromatics and polar  organics (con- 
ta in ing  N, s, 0) by solvent extraction. 
s t r a igh t  run middle d i s t i l l a t e  from Utah coa l  derived crude o i l  (bp 350-550"F) was 
consecutively t r ea t ed  with su l fur ic  ac id  and fu r fu ra l .  
"Sol. Extr.") w a s  used d i r ec t ly  without fur ther  processing. 

In  a method developed by the  Navy ( 4 ) ,  a 

The r e su l t an t  f u e l  (designated 

O i l  Shale Derived Fuel 

Green River o i l  shale was mined and surface re tor ted  by t h e  Paraho Development 
Corporation. A sample of JP-5 grade kerosene derived from t h i s  o i l  shale was supplied 
t o  the  Navy by Applied Systems Corporation, under a contract  l e t  by the  Office of 
Naval Research. In the  Paraho process, crushed and sized o i l  shale i s  fed  by gravity 
i n t o  a ve r t i ca l  r e t o r t  which i s  maintained a t  1000°F. Shale o i l  which was driven from 
the  rock was coked and then fractionated. 
t rea ted  and desulfurized i n  two stages.  
schematically i n  Figure 2. 
reported in grea te r  d e t a i l  elsewhere (5 ) .  

The middle d i s t i l l a t e  f rac t ion  was hydro- 
The major process s teps  employed are  shown 

The re f in ing  of t h i s  hatch of shale o i l  has been 
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Tar Sands Derived Fuel 

Bitumen obtained from t h e  Athabasca (Canadian) deposits was mined and re- 
Mined t a r  sands a re  t rea ted  with 

The s t r a igh t  run middle 

fined by Great Canadian O i l  Sands, Ltd. (GCOS). 
basic hot  water and t h e  bitumen was i so l a t ed  by f ro th  f lo t a t ion .  The crude bitumen 
was coked (goo-lOOO"F) and the  d i s t i l l a t e s  fractionated. 
d i s t i l l a t e  from coking was hydrotreated (-1500 psig H2;  700-750°F). 
treated middle d i s t i l l a t e ,  known as Unifined Kerosene (herein designated "Tar 
Sands") i s  usually used f o r  blending stock. 
shown schematically i n  Figure 3. 
have been reported elsewhere (6).  

The hydro- 

The major process steps employed are 
Details of t he  processing of Canadian tar sands 

Petroleum Derived Fuels 
, 

The petroleum derived fue ls  used i n  t h i s  work were typ ica l  JP-5 grade fuels 
which passed a l l  Navy spec i f ica t ions  f o r  JP-5 grade fue ls  and were typ ica l  of the 
fue ls  used at  t h e  Naval A i r  Propulsion Test Center. The h is tory  and de ta i l s  of 
refining of these fiels were not  available.  

Fuel Properties 

The physical p roper t ies  of a l l  fue ls  used i n  t h i s  study were determined 
according t o  Navy spec i f ica t ion  MIL-T-562kT, using ASTM standard methods. 
combustion, freeze poin ts ,  f l a sh  points,  smoke points,  v i scos i t i e s ,  as  w e l l  as - 
alkane composition f o r  these  fue l s  a r e  reported i n  reference (1). 
tabulations of phys ica l  p roper t ies  f o r  a l l  fue l s  used i n  t h i s  study have been 
reported (3, 4, 7, 8).  

Results and Discussion 

Heats of 

Complete 

PMR Analysis 

The aromatic f r ac t ion  of each f u e l  was i so la ted  by column chromatography 
The aromatic f rac t ions ,  which were cleanly separated over activated s i l i c a  gel.  

pressure on a ro t a ry  evaporator. 
from the  f u e l  s a tu ra t e s ,  were combined and the  solvent removed under reduced 

1:3 (vo1:vol) with spectrograde C C Q  and the  60 MHz PMR spectrum recorded. 
spectrum of a t y p i c a l  JP-5 grade f u e l  aromatic f rac t ion  i s  shown in Figure 4. 

The aromatic concentrate was d i lu ted  approximately , The PMR 
The 

areas under the  peaks which-correspond t o  s t ruc tu ra l ly  d i s t i n c t  protons were deter- 
mined and the  da ta  analyzed according t o  the  method of C lu t t e r  and co-workers (9) .  
The r e su l t s  of t h i s  ana lys i s  describe t h e  f u e l  aromatic f r ac t ion  in  terms of the  
"average molecule." 
defined below: 

The calculated parameters which a re  presented i n  Table I are 

Average Molecular Parameter 

Symbol Def in i t ion  

CA Average number aromatic carbons per average molecule 

Average number naphthene ( t e t r a l i n )  r ings per average molecule # naphthene 

Mw Average molecular weight 

# a lky l  gps 

n Average number carbons per a lky l  subs t i tuent  

% mono 

Average number a lky l  subs t i tuents  per average molecule 

Average percent monocyclic aromatics i n  sample 
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I n  a separate s e t  of experiments, some coa l  derived fue l s  were subjected t o  
mild but prolonged hea t ing  (1lO'F; 6 months) t o  ascer ta in  storage s t a b i l i t y .  The 
aromatic f rac t ions  of t h e  Sun 1 and Sun 2 fue ls ,  so t r ea t ed ,  were i so la ted  and sub- 
jected t o  FMR analys is  i n  an e f f o r t  t o  observe changes i n  composition upon storage. 
The r e su l t s  of analys is  of the  aromatic f rac t ions  of these fuels ("aged Sun 1," 
"aged Sun 2") a r e  a l so  reported i n  Table I. 

Before a de ta i l ed  ana lys i s  of t he  r e su l t s  i n  Table I i s  made, a discussion 
o f  sources of e r ro r  i n  t h e  da ta  i s  necessary. There a r e  a number of po ten t i a l  sources 
of error:  incomplete reso lu t ion  of the  aromatic f rac t ions  from other fue l  components; 
l o s s  of low bo i l e r s  during concentration of t he  column chromatography f rac t ions ;  in- 
correct estimation o f  t h e  average parameters caused by using a narrow cut aromatic 
fraction. Column chromatography over ac t iva ted  s i l i c a  g e l  i s  a wel l  known technique 
which has been widely used f o r  separation of f u e l  components (10). However, it has 
recently been ca l led  t o  our a t t en t ion  t h a t  2- paraf f ins ,  pa r t i cu la r ly  in  higher 
boiling f r ac t ions ,  can t a i l  i n to  the  aromatics f r ac t ions  during chromatography over 
s i l i c a  ge l  (11). The da ta  i n  Table I indicates t h a t  such processes a re  not detect- 
able by PMR i f  they are occurring a t  a l l .  For instance,  t he  Paraho fue l ,  which i s  
almost 4% n- pa ra f f in s  (l), shows a low value f o r  n (average number of carbons per 
substituent7. 
f rac t ions  during the  chromatographic separation, t h i s  parameter would be much higher. 
It would not be requi red  t o  have a la rge  concentration o f? -  hexadecane, f o r  instance, 
i n  the separated aromatics i n  order t o  observe a la rge  increase in  n . 
t h e  values f o r  n found f o r  a l l  fue l s  vary only s l i g h t l y  from run t o  run (approxi- 
mately 5%). We would expect a la rger  var ia t ion  f o r  t he  n parameter i f  incomplete 
separation were occurring. 

i 

If appreciable quant i t ies  of paraf f ins  were t a i l i n g  in to  the  aromatic 1 ' 

Furthermore, :a' 
E Loss of low bo i l ing  aromatic components during concentration of t he  individual 

f rac t ions  was a l s o  o f  concern t o  US. However, the  da ta  in  Table I ind ica te  t h a t  th i s  I 
process i s  unimportant. 
concentration of  naphthalenes. 
between runs for  most fue l s .  

Loss of low boi le rs  would r e s u l t  i n  a higher "apparent" 
The %mono data i n  Table I shows l i t t l e  var ia t ion  

Lastly,  t he  method of Clutter and co-workers (9) may incor rec t ly  estimate 
some average parameters i f  narrow cut fue ls  a re  used (12). Qual i ta t ive  ana lys i s  by 
glpc of some of the  aromatic f rac t ions  on a 10' X 1/8" 08-22? column indicates the 

re la ted  s t r u c t u r a l  i sove r s ) .  
presence of at l e a s t  60 d i s t i n c t  peaks which a re  not resolved (implying presence of 

cor rec t ly  r e f l e c t  t h e  composition of the  aromatic f rac t ions .  A complete discussion 
of the advantages of t h e  Clu t te r  method, compared t o  others ava i lab le ,  has been 
given elsewhere (9). 

We therefore f e e l  the calculated parameters i n  Table I 'I 1 

In another con t ro l  experiment, t he  molecular weights calculated from EMR 
data (Table I) were compared t o  those determined'by vapor phase osmometry (VPO) (13) 
and by mass spectroscopy (MS) (14). 
iiiined by t he  three iiiethods i s  presented i n  Table I1 below. 

A comparison of t he  molecular weights deter- 

TABLE I1 

COMPARISONS OF MOLECULAR WEIGHTS OF AROMATIC FRACTIONS 

Molecular Weight 

EMR - MS - vpo - Sample 

sun 1 
Sol. Extr. 
sun 5 
Paraho 

Pe t ro l .  JP- 5 

194 179 
240 206 

176 
198 
158 
176 
168 
176 
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The VPO molecular weights ind ica te  t h a t  t h e  FMR method cor rec t ly  reveals 
changes i n  molecular weights between samples. The mass spectrometric molecular 
weights correspond very c lose ly  t o  those obtained by PMR. 
EMR method generates accurate molecular weights fo r  these  aromatic f rac t ions .  
analogy, the  other parameters l i s t e d  i n  Table I a r e  a t  l e a s t  as accurate as the  
molecular weight. 

These data imply t h a t  the  
By 

The data i n  Table I suggest a f a i r l y  c l ea r  p i c tu re  of the  nature of t he  
aromatic fractions of these fuels.  
(new and aged), Paraho, Ta r  Sands, and both petroleum fue l s ,  Pet-1 and Pet-2, i s  
1 7 4 ~ 5  (Table I) .  
d i f fe red  markedly from t h i s  average. 
end point (>>287"C) of a l l  fue ls ,  while t h e  l a t t e r  f u e l  had the  lowest d i s t i l l a t i o n  
end point (261 '~ ) .  Most fue ls  had between 6.5 and 7 aromatic carbons, approximately 
3 alkyl groups and 2 carbons per a lky l  group i n  t h e i r  average aromatic molecule. 
This s imi la r i ty  in  the  nature of t h e  aromatic f rac t ions  is noteworthy s ince  the  
fue ls  examined were derived from s t a r t i n g  materials which a re  chemically, as  wel l  as 
geologically,  d i f fe ren t .  

The average molecdar  weight of Sun 1 and Sun 2 

Only two fue l s ,  Sol. E x t r .  and Sun 5, had molecular weights which 
The former f u e l  had the  highest  d i s t i l l a t i o n  

While the  aromatic f rac t ions  of these  fue l s  a r e  similar i n  ove ra l l  fea tures ,  
For instance,  t he  widest var ia t ion  i n  t h e  value of 

It must be recognized t h a t  f o r  t e t r a l i n  
, t he re  a re  important differences.  
any parameter was observed f o r  # naphthene. 
(1,2,3,4 - tetrahydronaphthalene), there  i s  one (1.0) naphthene r ing  per molecule.. 
In Table I, the # naphthene, of t he  aromatic f rac t ions ,  var ies  from 0.75 and 0.7 
(Sun 1 and Sol. Extr.)  t o  0.3 (Pet-2). This fundamental difference i n  the  aromatic 
f rac t ions  might account f o r  differences i n  the  v i scos i t i e s  of the  whole fue ls  (17,18). 
There a re  a l so  var ia t ions  i n  n, # CA, and # alkyl gp between these  fue ls .  
instance,  one might have ap r io r i  assumed t h a t  t h e  Sun 1 and Sun 2 fue ls  would 
exhib i t  a high # CA due t o  the  polycondensed aromatic nature of coals (15). 
the  # CA i s  higher f o r  both petroleum derived fue l s  used than fo r  any of the  o ther  
non-petroleum derived fuels.  
mono is  lowest f o r  t he  petroleum derived fue l s ,  which implies more naphthalenes 
i n  the  petroleum fue l s  than i n  the  other fue ls .  

For 

However, 

This i s  a l so  re f lec ted  i n  the  % mono values. The % 

This apparent anomaly, t h a t  t he  coa l  derived fue l s  contain l e s s  d icyc l ic  
aromatics, can be made understandable i f  we consider t h e  naphthene content of these 
aromatic fractions.  
tetralin-indane type. Clearly,  these naphthenes are derived from the  parent 
d icyc l ic  aromatic by hydrogenation. 
contribute t o  t h e  area of monocyclic aromatics (7.05 - 6.6 ppm; Figure 4), while 
the  # naphthene is  calculated from the  integrated a rea  under the  protons 6 t o  t he  
aromatic r ing  of t e t r a l i n  o r  indane (1.9 - 1.65 ppm; Figure 4) .  
hydrotreatment w i l l  convert naphthalenes t o  t e t r a l i n s ,  we should idea l ly  compare 
% mono (or  # CA) between fue ls  which have undergone equivalent processing. This 
process data was not available f o r  the  petroleum derived fue ls .  Instead, we can 
compare the  t o t a l  amount of dicyclics (naphthalenes + t e t ra l ins - indanes  ) between 
fue ls .  

The naphthenes present i n  these aromatic f rac t ions  a r e  of t h e  

The aromatic protons of these naphthenes 

Since vigorous 

The percent of d icyc l ic  compounds in  these f rac t ions  can be ca lcu la ted  t o  a 
first approximation i n  t h e  following manner: 

% Dicyclics = ($ mono) (# naphthene) + (100 - % mono) 1) 

If the r e su l t s  i n  Table I gave a value of 1.0 f o r  # naphthene, then each 
aromatic molecule would contain a t e t r a l i n  or indane type ring. 
than 1.0 for  # naphthene ind ica te  the  f rac t ion  of the  t o t a l  number of aromatic 
molecules which are of t he  te t ra l in- indane  type. For instance,  i n  the  case of t h e  
sun 1 fue l ,  75% of the  molecules a re  t e t r a l i n s  or  indanes (i.e., # naphthene = 0.75). 
Since the  aromatic protons of these naphthenes a re  counted as  "benzenes," we must 
cor rec t  the  % mono f igure  as shown in  equation 1). 

Hence, values l e s s  

The l a s t  term on the  r igh t  hand 
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s ide  of equation 
equation, we f ind  t h a t  7 8 . s  of t he  aromatic molecules in the  Sun 1 fue l  a r e  
dicyclic (84.3 X (0.75) + (100-84.3)). 
a r e  dicyclic i n  t h e  Sun 2 fue l .  However, t h e  '$ dicyc l ic  aromatic molecules fo r  the 
Pet-1 and Pet-2 fue l s  was found t o  be 55.2 and 52.1, respectively.  Hence, t he  coal 
derived fue ls  have s ign i f i can t ly  more d icyc l ic  (condensed) ring s t ruc tures  than the 
petroleum derived fuels. A s  expected, t h e  coa l  derived fuels contained l e s s  
naphthalenes than t h e  petroleum derived fue l s ,  because of t he  vigorous hydrotreat- 
ment t o  which they were subjected. 

1) i s  the  % naphthalenes i n  the  sample. By working through th i s  

Similarly,  68.5% of the  aromatic molecules 

In addition t o  cor rec t ly  predicting the  order of molecular weights (Table 
11), the EMR method de tec ts  changes i n  other parameters which are consistent with 
changes i n  f u e l  proper t ies .  
a Western KentucQ coa l  v i a  an i den t i ca l  sequence of process s teps  but t he  d i s t i l l a -  
t i o n  end point of Sun 1 was 279.5"C, while t he  d i s t i l l a t i o n  end poin t  of t h e  Sun 5 
was  261°C. 
i n  the  properties of t h e  Sun 5 aromatics: 
compared with those values f o r  Sun 1. 

For instance,  Sun 1 and Sun 5 were fue l s  produced from 

The lower d i s t i l l a t i o n  end point of t he  Sun 5 f u e l  i s  c lear ly  reflected 
lower values f o r  n ,  Md, # a lky l  gp 

While l a rge  changes i n  fue l  aromatics a r e  c l ea r ly  detectable by t h e  FMR 
method employed, we could not  de tec t  changes i n  the  aromatic *actions a f t e r  a 
storage s t a b i l i t y  t e s t  (Table I). 
t h e  storage t e s t ,  aromatic hydroperoxide which forms would not decompose rapidly. 
The aromatic hydroperoxides would be separated from unoxidized compounds upon s i l i ca  
g e l  chromatography (16). 
removed from t h e  remainder of t h e  aromatic "pool." 
changes i n  t h e  average parameters of aged Sun 1 and Sun 2. 
probably ins igni f icant ,  although a s t a t i s t i c a l  ana lys i s  was not performed. The 
l a t t e r  conclusion i s  cons is ten t  with t h e  observation t h a t  no gums o r  sediment were 
observed in  the  aged Sun 1 and aged Sun 2 fue l s  and furthermore, t h a t  t he  thermal 
s t a b i l i t y  of both aged fue l s  w a s  unchanged. 

Under the  s t a t i c ,  oxygen def ic ien t  conditions of 

The most oxygen l a b i l e  aromatics would therefore  be 

These changes a re  
There a r e  small and i r regular  

Correlation of Average Parameters with Fuel Properties 

The co r re l a t ion  of f u e l  properties with compositional data has been an 
ac t ive  area of research f o r  some time (19-21). 
not t o  develop a s e t  o f  equations from which one can ca lcu la te  a spec i f ic  f u e l  
physical property from compositional da ta  (21),  bu t  ra ther  t o  attempt t o  explain 
some of t he  sub-specification proper t ies  of these a l t e rna te  fuels.  
p roper t ies  which were of concern t o  us were the  smoke poin t ,  v i scos i ty  and freeze 
poin t  (1). 

O u r  i n t e r e s t  i n  t h i s  area was 

Some 

In  general, f u e l  properties were p lo t t ed  against  n, # CA, # alkyl gps,  
# naphthene. 
# CA/n X # a l k y l  gp) and parameters which can be  calculated from the  data i n  
Table I, such a s  w t .  $ H (aromatics) and approximate diameter of t h e  average 
aromatic molecule, were p lo t t ed  against  t he  f u e l  property of i n t e re s t .  When 
s t r a igh t  l i n e  re la t ionships  were observed, l e a s t  squares regression ana lys i s  was 
used t o  ca lcu la te  t he  coef f ic ien t  of cor re la t ion ,  r. 
t h a t  baseline data for a representative sampling of petroleum JP-5 grade fue l s  has 
not  ye t  been obtained. 
a r e  typical of our r e s u l t s ,  a r e  i l l u s t r a t e d  below. 

content (vol. %) of t h e  f u e l  (1) .  
suggest t h a t  'some property of f u e l  aromatics controls combustion charac te r i s t ics .  
However, we could f ind  no cor re la t ion  between f u e l  smoke point and any property of 
fue l  aromatics. 

Each ind iv idua l  parameter, combinations of parameters ( i . e . ,  

It should be emphasized 

Selected f u e l  property-FMR parameter cor re la t ions ,  which 

It has been shown t h a t  f u e l  smoke poin t  i s  controlled by t h e  aromatic 
This cor re la t ion ,  as  wel l  as others (19, 22), 

Two examples, which a r e  typ ica l ,  a r e  sham in  Figures 5 and 6. 
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Fuel viscosity i s  a Mdamenta l  property which d i r ec t ly  cont ro ls  atomization in  
combustors and a f f ec t s  f u e l  cont ro l  equipment. 
mixtures can often be represented by a simple add i t iv i ty  l a w  (25). 
Viscosity of cycloparaffins,  as  wel l  as t e t r a l i n s  and indanes, can d i f f e r  widely 
from the  Viscosity of t h e  parent aromatic (17, 18). 
surpr i s ing  tha t  t he  f u e l  v i scos i ty  was  found t o  co r re l a t e  so c lose ly  with the  
"diameter" o f  t he  average aromatic molecule (Figure 7). 
aromatic molecule was estim- follows : 

It i s  known t h a t  v i scos i ty  of l i qu id  
I n  addition, the 

It was therefore somewhat 

The diameter of t h e  average 

Diameter (A) = Fr. mono (2.8) + Fr. D I  (4.9) + n (0.89) (# alkyl gp) 2)  

where Fr .  mono = Fraction monocyclic rings 
Fr. D I  = Fraction d icyc l ic  rings,  including 

t e t r a l i n s  (from equation 1)) 

I n  these JP-5 grade fue l s ,  we may be dealing with a spec ia l  phenomenon. 
o i l  fractions a re  hydrotreated, the  v i scos i ty  of t h e  o i l  decreases (17). 
the  graph i n  Figure 7 implies t h a t  t he  v i scos i t i e s  of t he  aromatics and t h e  
t e t r a l i n s  and cycloparaffins derived therefrom a r e  similar.  This view i s  supported 
by the  negligible change i n  f u e l  v i scos i ty  upon vigorous hydrotreatment of the  
Sun 1 and Sun 2 fue ls  ( 3 ) ,  which resu l ted  i n  near ly  complete dearomatization. 

When lube 
However, 

Dimitroff and co-workers (16, 17) have shown f u e l  freezing t o  be a complex 
process w i t h s -  alkanes playing an important ro l e ,  bu t  with a l l  f u e l  components 
in te rac t ing  during freezing. 
po in t  is re la ted  t o  the  concentration of 2- hexadecane but  not t h e  t o t a l n -  alkane 
concentration for these a l t e rna te  fue ls .  
po in t  probably does not follow a simple add i t iv i ty  ru l e .  
f u e l  freeze point against  t he  diameter of t he  average aromatic molecule i s  shown. 
The good cor re la t ion  degrades markedly when the  volume % aromatics ( i n  each f h e l )  
i s  accounted fo r  (Figure 9).  Hence, f u e l  freeze poin t  seems t o  depend more strongly 
on t h e  s ize  ra ther  than the  quantity of aromatics present i n  fuel.  
explanation f o r  t h i s  behavior i s  t h a t  t h e  larger aromatics cause an ordering o f  
non-aromatic fue l  components i n  a way similar t o  the  ordering of water by dissolved 
soaps. 
cor re la te  well bu t  t he  urea extracted (1) Faraho f u e l  ( 0 . 1 7 % ~ -  hexadecane) does 
f a l l  near the  l i n e .  
grade kerosene i n  order t o  es tab l i sh  baseline data. 
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Fig. 1 

PROCESSING SCHEMATIC FOR SUN COAL DERIVED FUELS 
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Fig. 2 

PROCESSING SCHEMATIC FOR PARAHO FUEL 
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Fig. 3 

PROCESSING SCHEMATIC FOR TAR SANDS FUEL 

( "UNIFINED KEROSENE" ) 
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Fig. 5 
FUEL SMOKE POINT VS. AROMATICITY 
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Fig. 6 
FUEL SMOKE POINT VS. Wt % H(AROM. 1 X V o l  % AROMATICS 
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Fig. 7 
FUEL KDBNATIC VISCOSITY (-30°F) VS. DIAMETER OF AVERAGE AROMATIC MOLECULE 
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Fig. 8 
FUEL FREEZE POINT VS.  DIAMETER OF AVERAGE AROMATIC MOLECULE 
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Fig. 9 
FUEL FREEZE POINT VS. D I A M E T E R ( ~ o M . )  X VOL % AROMATICS 
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